专业一站式激光配件激光设备配件采购服务
网站云南体彩网|关于我们|新闻中心|厂房设备|产品展示|技术支持|在线留言|人才招聘|联系我们
联系我们

深圳市茂和兴精密机械云南体彩网
地址:深圳市龙岗区坪地街道坪西社区东兴路4号A栋1-2楼 
传真:0755-28917847
邮政编码:518112
网址:www.odaaopuo.com
E-mail:[email protected] 
            [email protected]

你的位置:云南体彩网  >  技术支持   >  技术资料技术资料

激光精密加工的应用现状

加入日期:2012-03-14    录入: 茂和兴   查看:3879   复制链接

    激光精密打孔随着技术的进步,传统的打孔方法在许多场合已不能满足需求。例如在坚硬的碳化钨合金上加工直径为几十微米的小孔;在硬而脆的红、蓝宝石上加工几百微米直径的深孔等,用常规的机械加工方法无法实现。而激光束的瞬时功率密度高达108W/cm2,可在短时间内将材料加热到熔点或沸点,在上述材料上实现打孔。与电子束、电解、电火花、和机械打孔相比,激光打孔质量好、重复精度高、通用性强、效率高、成本低及综合技术经济效益显著。国外在激光精密打孔已经达到很高的水平。瑞士某公司利用固体激光器给飞机涡轮叶片进行打孔,可以加工直径从20um到80um的微孔,并且其直径与深度之比可达1:80。激光束还可以在脆性材料如陶瓷上加工各种微小的异型孔如盲孔、方孔等,这是普通机械加工无法做到的。

  激光精密切割与传统切割法相比,激光精密切割有很多优点。例如,它能开出狭窄的切口、几乎没有切割残渣、热影响区小、切割噪声小,并可以节省材料15% ~30%。由于激光对被切割材料几乎不产生机械冲力和压力,故适宜于切割玻璃、陶瓷和半导体等既硬又脆的材料,加上激光光斑小、切缝窄,所以特别适宜于对细小部件作各种精密切割。瑞士某公司利用固体激光器进行精密切割,其尺寸精度已经达到很高的水平。

  激光精密切割的一个典型应用就是切割印刷电路板PCB(PrintdCircuitsBoards)中表面安装用模板(SMTstencil)。传统的 SMT模板加工方法是化学刻蚀法,其致命的缺点就是加工的极限尺寸不得小于板厚,并且化学刻蚀法工序繁杂、加工周期长、腐蚀介质污染环境。采用激光加工,不仅可以克服这些缺点,而且能够对成品模板进行再加工,特别是加工精度及缝隙密度明显优于前者(见图6),制作费也由早期的远高于化学刻蚀到现在的略低于前者。但由于用于激光加工的整套设备技术含量高,售价亦很高,目前仅美国、日本、德国等少数国家的几家公司能够生产整机。
 
    一、常规激光加工技术的发展与应用

    随着加工技术的创新和进步,目前常规激光加工的技术,如钻孔、切断、表面改性等,都有不同程度的进展。

    (一)钻孔
    早期激光钻孔采用定点冲击法:即在一个位置上用脉冲激光束不停地加工,直至孔通。这种加工方法,使加工的孔深和孔径均受到限制。

    高重复频率YAG激光器进入实用阶段后,出现了旋切钻孔法(Trepanning),即用专用光学旋转头或数控自动生成圆轨迹进行激光套料加工。这不仅消除了孔径限制,且由于有辅助吹气,加工区呈半敞开式,熔融物易排出,故孔表面质量好。

    对于分布有大量相同规格小孔的零件,特别是回转体,当前又发展了飞行打孔法(Drilling on the fly),即激光对一个孔位加工一个脉冲后,不管孔是否打通,工件都利用光脉冲间隙快速运动(移动或转动)到下一个孔位,如此进行多次循环对同一位置多次冲击,直至完成所有孔的加工。其优点是激光脉冲间隙的时间被用作零件孔的位移,可大大提高加工速度。钻孔速度目前为每秒数10孔,预计可达每秒500孔 (亚毫米孔径)。技术的关键在于激光到达,工件必需运动到位,这对非均布孔来说有很大难度。用CNC闭环控制系统控制,当孔加工速率更高时,为保证圆的孔形,在激光作用时间内,激光束必须与零件同步运动。激光飞行打孔在航空零件加工中已得到了应用,环形燃烧室的冷却孔加工是典型的应用实例。此外,高速飞机的机翼和发动机进气道的前沿,气流极易与翼表面分离,形成紊流增大而气动力损失,为此,设计了有吸气功能的层流翼(短舱)套,其表面是由1mm厚的钛合金板制成,上面分布了1200万至10亿个锥孔,外表面孔径0.06mm,内表面孔径为0.1mm,孔间距为0.3~1mm,层流翼套的小孔也是用飞行打孔法完成的。

    对于微米量级孔径的筛孔,用准分子激光或调Q的YAG激光快速扫描加工(每秒可加工数千孔)可得到满意的结果。

   (二)切割
    激光切割近期仍以CO 2 激光为主,随着器件功率的加大,切割深度和速度都有大幅度提高。为提高加工质量,采用高压吹气(压力达1.6~2.0MPa),用 3.4kW的功率的CO 2 激光可切割5~6mm厚度的铝板,切口光滑,正、背面不留熔渣。值得提出的是采用两束激光复合切割材料,能取得更低的能耗。图1是两种激光复合切割的实验装置示意图。试验表明,用CO(270W)激光与KrF (30W)激光复合切割,比单用一束CO(300W)激光切割碳钢可提高速度30%,切割厚度可增加40%以上。

 

    (三)焊接
    激光焊接在仪器仪表业中早有应用,近期研究方向主要集中在航空航天工业中的高温合金、钛合金和铝、镁等难焊接合金的加工;汽车工业中的大厚度、变厚度钢材的深穿透焊接方面。

    大型客机发动机短舱的吊挂采用2。5kW CO 2 激光焊接技术;发动机的压缩机静子是由激光切割叶型孔后再用激光将叶片和外环焊在一起构成,用2kW连续输出的YAG激光设备加工,焊接速度达7m/min。

   在汽车行业中,激光焊接所占比例已逐年上升,从车身面板同样材料的焊接发展到不同厚度和不同表面涂层的金属板件的焊接。法国SCIAKY公司建立了一个 6kW的 CO 2 激光加工站,用分光镜将激光束分到12个工位同时进行点焊,5秒钟可焊一件,不仅节省了6~12个电阻点焊机器人,而且因减少搭接宽度使汽车重量减轻 56kg。

    激光焊接技术研究的前沿,一是大功率或超大功率焊接时,对出现的等离子体的控制,采用侧向吹气压缩法,将等离子云压在熔池形成的缝中来改善等离子云的屏蔽行为。另一个动向是采用模糊逻辑的方法,对焊接过程进行智能控制,这对变厚度变参量的焊接过程具有重要意义。

二、激光领域加工方法的新进展

    (一)激光快速成型
    激光快速成型技术是激光技术与计算机技术相结合的一项高新制造技术,主要功能是将三维数据快速转化成实体,具有很大效益。其基本原理是先在计算机中生成产品的CAD三维实体模型,再将它“切成”规定厚度的片层数据(变换成一系列二维图形数据),用激光切割或烧结办法将材料进行选区逐层叠加,最终形成实体模型。成型原理如图2所示。

 

    逐层叠加有以下几种方法:

    1。液相树脂固化法(SL)。材质是光敏树脂,紫外波段激光作平面选区扫描照射,使树脂按指定区域固化(悬空部分需设支撑)。机床作下沉运动,使已成型部分浸没于液面之下。这种方法的优点是零件表面光滑,变形小;缺点是强度低,树脂价高且保存期短。

    2. 选区烧结法(SLS)。材质有石蜡、塑料、尼龙、陶瓷、包覆金属和裸金属等,均为粉末状态。用50~100W的CO 2 激光器作烧结工具,激光束作二维选区扫描,使粉末“烧结”成型。机床须具备送粉、铺粉、刮平及预热等功能。这种方法价格便宜,精度较高(±0.1mm),可直接代替木模制砂型。金属零件的快速制造,金属粉末烧结的关键是防氧化和热传导,一种方法是在金属粉末外涂覆粘合剂,用激光选区照射,粘合剂热溶粘接成型后,将零件由粉末中取出,再往缝隙中灌注金属最后制成零件。另一种新研究的方法是用无涂覆的金属粉末直接烧结制造零件,如用铜、镍或铝粉,颗粒度在 22.5~90μ m间用600W的YAG激光烧结。采用这种方法加工的零件材质会出现空隙,为改善空隙,也有采用选区激光直接喷涂叠加成型,原材料为粉状 Inconel625,用3kW射频激励的CO 2 激光作光源。

    3.叠层粘接法(LOM)。材质是纸,经背面涂粘接剂等处理。选用25~50W的 CO 2 激光平面切割机构,机床完成纸带的送进铺平及滚压(粘接)等功能。成型零件尺寸较大,强度较高,但精度较低,腔形零件腔内排废纸难,零件抗潮性差。为此,采用后置表面涂覆环氧加铝粉处理,可大大提高纸质的耐温、耐潮湿变形和强度等性能。

    快速成型零件还有几种不用激光作工具的方法,如三维打印(FDM)法,固基光敏液相掩模造模造型(SGC)法以及电弧或喷涂添加法等。

    上述诸多快速成型法为零件由设计到生产提供了经济、准确、快速的工艺路线。

    (二)激光成形与校形
    激光成型和校形是通过激光对材料局部加热产生的热应力,使板材零件发生形变的加工方法。根据对局部的均匀和不均匀的加热和冷却方式,可加工不同形状的零件(如图3所示)。

 

    该加工方法十分经济,通过选择不同的激光参数,如波长、作用时间、功率等可加工所有材料,适合于许多领域,特别是微电子工业。

    (三)微细加工

 

    在电子、仪表、航空航天工业中,激光加工可以高效率高质量地完成微细小孔、划片微调、切割、焊接以及标记等加工,其中尤以准分子激光的应用最为广泛。由于材料对紫外波吸收率高,准分子激光脉宽窄,因而有极高的功率密度。准分子激光除作常规的钻、切、划加工外,还可用掩模法直接在工件上生成图案。激光辐照的地方,材料被光化学的消融作用而除去,无论钻孔、切割或刻划,都是直壁尖角,没有热影响区。加工尺寸小,可达亚微米量级,精度取决于掩模,效率取决于激光的功率。掩模法又有工件表面直接掩模和掩模投影两种,如图4所示。近期在微细加工领域开发激光清洗和激光作为夹持工具(镊子)的研究。激光清洗是指去除超净超光滑表面污染微粒,其原理是激光能量被微粒或表面或人为的清洗介质(如水)吸收后产生爆炸性汽化时,把微粒从表面上除去。该法可有效地用于半导体器件、激光陀螺的研制中。激光镊子主要用于有机材料的 微粒搬运和固定,其原理是微米量级的有机微粒在激光的束腰处,要受一对极子力(当微粒1μ m时)或折射力(当微粒>1μ m时)的作用,这些力都是把微粒拉向激光的束腰(光最强处)中心处,因此,可借移动或固定激光束来夹持微粒。

 

(四)纳米材料的制备

    纳米材料被称为21世纪新材料的基础,所谓纳米材料是指材料的颗粒直径在1~100nm之间的材料。当材料颗粒达到这个量值时,由于表面效应、小尺寸效应和量子效应,导致材料特性发生变化,如反射率和熔点下降,硬度增高等。应用激光技术可制备纳米材料。准分子激光对材料有很强的消融作用,如铝材在强激光照射下,表面出现等离子体云,注入氧气或氮气,便可生成Al 203或AlN的微粒,直径在3~7nm范围,每小时可产生十余毫克。

    (五)激光复合加工
    不同的激光复合或激光和其它能源共同对材料的复合加工,目前大多用于材料表面改性处理。日本新制铁公司用CO[_2]激光束和离子束,利用物理气相沉积技术 (LPVD)制备超硬薄膜。图5是该装置的示意图。用LPVD先制得非晶态氮化硼,再用0.5~2.0kV辐照氮离子,则可生成超硬的立方氮化硼薄膜。两种激光复合加工也可取得特殊效果,如CO+KrF激光切割。可提高工效30%以上,用CO 2 激光切割木制商标模或雕刻木质、塑料等非金属装饰品,切口变黑。据日本刊物报道称,用准分子激光后续处理,还会恢复材料本色。同样,如用准分子激光或其他调整Q激光作精修工具,可大大提高激光加工的价值,因此激光复合加工是很有发展前途的加工方法。

 

    三、新型工业激光器
    工业激光器主要是指用于加工的激光器,它的发展是激光加工技术发展的前提条件。90年代前,CO 2 激光器和YAG激光器占工业激光器的96%以上,进入90年代,这两类激光器的发展主要表现在功率和光束质量的提高两个方面。CO 2 激光器的功率整整提高了一个量级,但是,真正用于生产加工的CO 2 激光器功率,切割一般不超过3kW,焊接在10kW左右。为提高光束质量,快速轴流CO 2 (准基模输出)激光器发展很快,主要用于切割和深穿透焊。对于YAG激光器,商品器件的功率由500W提高到1000W。采用激光谐振腔内加压缩发散角装置,使激光光束发散角减至5 mrad以下,提高了聚焦功率密度,强化了加工能力。
 

宁夏体彩网 陕西体彩网 甘肃体彩网 新疆体彩网 广西体彩网 陕西体彩网 云南体彩网 陕西体彩网 广西体彩网 甘肃体彩网